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Computer-Aided Design of Evanescent-Mode
Waveguide Filter with Nontouching
E-Plane Fins

QIU ZHANG anp TATSUO ITOH, FELLOW, IEEE

Abstract —This paper presents a computer-aided design algorithm for
the analysis and design of an evanescent-mode bandpass filter with non-
touching E-plane fins. The theoretical analysis is based on the generalized
scattering matrix technique in conjunction with the spectral-domain ap-
proach and mode-matching method. The technigue used in this paper takes
into account the dominant as well as the higher order effects. The
measured filter responses in the Ka-band are in good agreement with
those obtained by this analysis.

I. INTRODUCTION

N THE LATE 1950’s Jaynes [1] and Edson [2] proposed

that resonators built in a cutoff waveguide may be used
in filter design. These filters are called evanescent-mode
filters. Microwave bandpass filters using evanescent modes
have been designed successfully [3]-[5]. The evanescent-
mode bandpass filter has several advantages over the con-
ventional type of bandpass filters (waveguide above cutoff,
coaxial line, etc.). For instance, a sharper tranmsition to
out-of-band rejection can be obtained on the higher
frequency side. Evanescent-mode waveguide filters are also
smaller than traditional waveguide filters. A waveguide
operating below its cutoff frequency is basically an induc-
tive element [5], [6]. Suitable capacitive elements are needed
to construct an evanescent-mode waveguide bandpass filter.
Evanescent-mode filters using conventional capacitive ele-
ments such as tuning screws [4], [5] are costly and difficult
to mass-produce because of their complicated structure.

Nontouching E-plane fins [7], which are easily fabri-
cated, are proposed in this study as the capacitive ele-
ments. The filter structure, shown in Fig. 1, consists of a
number of nontouching E-plane fins placed in a rectangu-
lar waveguide below cutoff. The fins may be metal only or
supported by a dielectric layer. The input and output
portions of the filter are coupled to the external circuits via
double-step waveguide junctions. The larger waveguides
operate above the cutoff frequency. Since the capacitive
elements utilize a printed circuit structure, they are suit-
able for mass production at low cost.

The initial approach to the synthesis of an evanescent-
mode filter was based on image parameter theory [3].
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Fig. 1. The structure of evanescent-mode waveguide filter with non-

touching E-plane fins.

Recently a design theory based on the equivalent circuit
analysis was used by Craven and Mok [4]. The basic
assumption used is that the only mode existing in the guide
is an evanescent TE,; mode. Under this assumption a
simple transmission line equivalent circuit is applicable.
The filter then can be represented by an equivalent circuit
of the coupled resonators [8], [9]. Although this technique
is accurate enough for some designs, the equivalent circuit
approach neglects the éffects of higher order modes. Omis-
sion of these effects could cause a bandwidth shrinkage
and higher bandpass ripples in the filter response. In this
paper a generalized scattering matrix technique is used in
conjunction with the spectral-domain approach and the
mode-matching method to analyze and design an evanes-
cent-mode waveguide bandpass filter with nontouching
E-plane fins. This method takes into account the effect of
the dominant as well as all the higher order modes.

As shown in Figs. 1 and 2, the filter consists of three
portions: the double-step waveguide junctions; the non-
touching FE-plane fin portion, which may contain more
than one fin; and the waveguide below cutoff. First each
portion is characterized by its corresponding generalized
scattering matrix. In this study, the scattering matrix of the
double-step junction is found by the mode-matching tech-
nique. The scattering matrix of the nontouching fin is
obtained by combining the spectral-domain method with
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Fig. 2. (a) Cross sectional view. (b) Top view. (¢) Side view of the filter.

residue calculus [7]. The scattering matrix of the evanes-
cent waveguide is derived by the transmission line equiv-
alent circuits of the waveguide. These matrices are then
combined via a generalized scattering matrix technique to
obtain the scattering matrix description of the evanescent-
mode filter. The insertion loss and the return loss of the
filter can then be obtained from the final scattering matrix.

Filters designed with the present technique have been
tested in the Ka-band. Good agreement between theory
and measurement is observed.

II. ANALYSIS AND DESIGN PROCEDURE

The analysis of an evanescent-mode waveguide band-
pass filter with nontouching E-plane fin is based on the
generalized scattering matrix technique in conjunction with
the spectral-domain approach and the mode-matching
method. The study begin with a brief description of the
generalized scatteting matrix. Then the scattering matrix
representations for the double-step junction, the nontouch-
ing E-plane fins, and the evanescent-mode waveguide sec-
tion are obtained by the mode-matching technique, the
spectral-domain method, and waveguide theory, respec-
tively. Finally, these scattering matrices are combined to
obtain the final generalized scattering matrix. The filter
response is calculated from the final scattering matrix.

405

A. Generalized Scattering Matrix

The concept of a generalized scattering matrix, intro-
duced by Pace and Mittra {10}, is closely related to the
scattering matrix of circuit theory or of microwave net-
work theory. It differs by including scattering of all modes,
so that the scattering matrix will in general be of infinite
order.

The scattering matrix can be defined for a junction
discontinuity at which the fields may be expanded in
modes, such as the double-step waveguide junction. Con-
sider that the mnth TE mode is incident upon the plane
z =0 from the larger waveguide 1 and waves are reflected
back into waveguide I and transmitted into the smaller
waveguide II. If the amplitude of the mnth TE incident in
I is normalized to unity, then the amplitude of the pgth
TE scattered mode in waveguide I is SEE ( pg, mn), and
the amplitude of the pgth transmitted TM mode in wave-
guide I is SYE ( pq, mn).

In the notation used above, the scattering matrix relates
the excited modes to the incident ones via

(2)-1s(2]

The superscript s indicates scattered fields, and 7 ex-
presses the incident fields. The general element of S, is
8;?(pgq, mn), where x and y(=E or M) represent a TE or
TM to x wave; i and j=1 or II indicate the larger guide
or smaller guide; m, n, p, and ¢ are integers correspond-
ing to different modes. Theoretically the generalized ma-
trix is of infinite dimensions corresponding to the infinite
number of eigenmodes. The matrix is truncated to finite
size for numerical calculations [11].

M

B. Scattering Matrix Representation of a Double-Step
Junction by Mode-Matching Method

In this section the scattering matrix representation of a
double-step junction is derived via the mode-matching
technique [12], {13]. We use I to represent the larger guide
while the smaller guide, which is a partially dielectric-
loaded waveguide, is denoted by II. The field is derived
from the electric vector potential F and the magnetic
vector potential A [14]:

(2)
©)

E=—-VXF+V XV XA/jwe,
H=v XA+V XV XF/jop,.

In this study it is convenient to choose

A=yYx

(4)
)

where ¢ and { are the scalar functions which represent
the electric (TE) wave and magnetic (TM) wave transverse
to the x direction, respectively, and x is a vector in the x
direction. These potentials are extended in terms of their
eigenfunctions, which must satisfy the boundary condi-
tions. The potentials in each region can be expressed as

F=¢x
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follows: o
¢ = Z Z [ lmnexp( klzhmn )
m=1n=0
+b exp(kzzhmnz)] 1mn(x7 y) (6)

Z Z [Cimn P (= KypzomnZ)

m=0n=1

+ dlmn eXp (klzemnz)] len(x’ y)'
The notation used in this part is as follows:

(7)

Xl”d[ I=m,n, or mn indicates mth, nth, or mnth
L mode;
d = h or e, h: TE-to-x field; e: TM-to-x field;
j=1, 2, or 3 indicates the variable in the
region 1, 2, or 3 of the smaller waveguide;
— ¢c=x, y, or z indicates that x, y, or z direc-
tion, respectively;
i=1 or II, I. larger waveguide; II: smaller

waveguide;
indicates the variable
where
Po.(x,y)=R,,(x)S,(») (8)
Qimn(x’y)=7:m(x)r/m(y) (9)
MaI 0 - VbII 0 AImn
0 Va 0 My || Cimn _
MbI McI - Van VdII BIIpq
Vit Vg My My DIIpq
M,

are the eigenfunctions of the TE-to-x and TM-to-x fields,
respectively. In region I, these eigenfunctions are repre-
sented by

RIm(x) rImSln(qux/al) (10)
SIn(y) sInCOS(nWy/bl) (11)
T1,,(x) = Ny,cos(mmx/a;) (12)
VIn(y) Notn Sm("’”)’/bl) (13)
m=0,1,2,---, M; n=0,1,2,---,N

In the smaller waveguide, the eigenfunctions are given by
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where Ny, Mg, N, and Ny, are normalized
coefficients. The mth eigenmodes of TE-to-x and TM-to-x
fields in the partially filled waveguide in region j are
represented by kv, ,,, and kyy, ;.. Here k., and k,,.,,.,
are the propagation constants of the mnth TE- and TM-to-
x fields in the x direction, and must satisfy the following

dispersion equations:

(k Iza'mn) +kg= (m'”/al)z“"(n'”/bl)z (18)

2 2

(kIIzdmn) + k/ = (kIIxjdm) +(n77/b) (19)
where d=h or e, j=1, 2, and 3, k, is the wavenumber in
free space, k .= \/g ko, and ¢ g is the relative dielectric
constant of the smaller guide in region j. The coefficients
@opns Dimn> Comms and d,,. in (6) and (7) correspond to
incident and reflected waves and are related to each other
by the scattering matrix. The scattering matrix can be

determined by matching the tangential fields at the step
discontinuity at z = 0 (see Fig. 2(a)):

Efy yjatz=0= Erix, yjat 2=0 in area A4,
Hyy yatz=0= Hy, yjat z=0 in area 4, (20)
Eiy jat-—0=0 inarea 4, — A4,.

Applying the orthogonality relationship between poten-
tial functions leads to the matrix equation

-M,; 0 Vi 0 By,
0 ~Va O My Dy,
-M,, M, Vo Vi AIIM
Va VdI M pu — Mg CHpq
M,
where M ;, M, etc, express matrices. For instance, M

is a matrix of dimensions PXQ XM XN. V1, V1, -
are diagonal matrix of dimensions PXQ X P X Q, M XN
XMXN,---, and 4,,,D,,, - etc. are vectors of di-
mensions M X N or P X Q.

The scattering matrix of the double-step discontinuity is
then given by

S
Sa= ( S

S,
‘“2) =M, M. (21)

Sd22

an(y) = Nyp1,€08 [(gm/b)(y - )] (14)
N sin Ky, (X = x,) Xp<x<xy+hy
Rnp(x) _ NrIIZp_Sin Kiranp (x = %1 = hy) (15)
+ Ny112 €08 K 1ap, (X — X1 — 1y) x;th <x<x;+h +h,
Ny, sin kg, D3, (x — x; — a) x;+h+h,<x<x+a
an()’) vIIqsm[(‘IW/b)(y )’1)] (16)
]VIIHpCOSkIIXIep(x -Xx;) Xy <x<x +h
Tnp(x) _ ]vtIIijOSkH‘XZep(‘x = x;—hy) (17)
i + Ny Sinky o, (x —x,—hy) X+ hy<x<x; +h +h,
Ni13,€08 kyp s, (X — X, — a) xi+hi+h,<x<x,+a
p=0,1,2,... P; q=0,1,2,---,0.
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Since the double-step junCtion is between an empty
waveguide and a partially filled waveguide, the formula-
tion is much more complrcated than a simple double-step
junction. The program was checked by computing the
scattering parameters of a simple double-step waveguide
discontinuity from Ku- to K-band (15.8 mmXx7.9 mm to
107mm><432mm)w1thM 8, N=4, P=5,and Q=2.
The results are in good agreement results with Arndt and
Wriedt’s (Fig. 3) [15] '

C. Matrzx Representqtlon for the Portion of Nontouching
Fins ' * '

The scattering matrix for a nontouching fin can be
obtained by combining the spectral domain method with
residue calculus [7]. A brief descnptlon is given here, since
more details can be found in [7]. Referring to Fig. 4 at
x=h, +h,, the sum of the incident fields (E] and E))
and the scattering fields (E; and ES) must be equal to the
total fields (E; and E)). In the space-domam formulation,
coupled 1ntegra1 equations for the unknown current distri-

butions Jy and J on the strip, Wthh generates the scattered '
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fields, may be derived from the condition that the total of
the tangential fields must be equal to zero on the strip. In
the Fourier transform domain defined by

¥, B) = [exp(je,y) dy [9(y,2)exp(iB) dz (22)
a,=nm/b |

the above statement is

~ ~

=E'-E'=G,J,+G,J, (23)

) (24)
where G

=

E~S = Et El G .]:/ + zz ‘];
yy etc. are Fourier transforms of dyadic Green’s
function. A set of inhomogeneous algebraic equations can
be obtained by applying Galerkin’s method to (23) and
(24):

ZK;,Ya,+ZK;;bj=—<Jy;,F'> p=1,2,---,1
Jj .
(25)
I .
ZK;fa,+EK”b = — (5B, q=1,2,-,7
i
(26)

where ( ) indicates the inner product and * denotes the

- complex conjugate. Note that, in contrast to the eigenvalue

problem, the rrght-hand sides of (25) and (26) are not zero
because the contribution of the incident field is nonzero
everywhere Equations (25) and (26) are solved for the
expansion coefficeints a, and b, of the assumed current
distribution j, =X/a, j,, ‘and Jj,=XJb,j,,. Hence ES and
ES are now completely known from (23) and (24).

On the other hand, the scattered field for |z|>w/2 can
be expanded into LSE and LSM modes containing propa-
gation factors such as exp(+ jB,,,2) in the space domain.
Hence in the spectral domain, they are expanded in the
series containing such pole terms as 1/(B +B,.), where
the B,, are the propagation constants of the LSE and
LSM modes The left-hand sides of (23) and (24) can be
written in terms of these series expansions with unknown
modal amplitudes, which are related to the scattering
parameters of the generalrzed scattermg matrix. Note that
ny etc. contain poles at '+ 8, Hence, the modal ampli-
tudes can be found by equating the residue of both sides of
(23) or (24), namely, the scattering matrix of the nontouch-

ing fin can be determined.

Since the filter may contain more . than one fin element,
a general case must be considered here. Fig. 5 shows a
structure consisting of n fins, which are mdrcated by
F, F,,- -, F,. These fins are separated from one to another
by dlstances Tl, T,,--+,T,_,. To obtain a scatterrng matrix
representation § for th1s portion, we consider that a
substructure which consists of fins F; and F,, with spacing
T,. The substructure is shown in Fig. 6. The scattering
matrices of fins F; and F,, Sf1 and §;, are obtained by
the method described above. With the scattermg matrix
notation, each of these matrrccs contains four submatrices
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Fig. 5. A filter containing » nontouching fins.

and can be written as

S S

Sf1= Sfm Sf112 27)
121 122
hY hY

Sf2= szu szlz . (28)
1221 1222

With the knowledge of the scattering parameters for a
single fin, the generalized scattering matrix technique is
applied to obtain a scattering matrix of this substructure.
The concept is that of multiple-reflection phenomenon. If
a wave from region A is incident upon F,, fields will be
partly reflected back into region 4 and partly transmitted
into region B. After traveling a distance T}, a part of the

eXp ( - "H:hloTl) 0
0 €Xp ( - KIIthOTl)
Stl =
0

wave transmitted into region B is reflected back and the
remaining part is transmitted into region C via F,. This
process continues until the reflected wave dies out. This
multiple-reflection phenomenon between F, and F, im-
plies a matrix combination process that leads to the
scattering matrix for the substructure.

In region B of Fig. 6, the smaller waveguide section
with length Tj, operated below its cutoff frequency, is
represented by the matrix S,,. The elements of those
matrices are easily obtained from the transmission line
equivalent circuits of the guide, in which the characteristic
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Fig. 6. Derivation of scattering matrix for the cascaded substructure.

impedances are imaginary. Since no propagation modes
exist below the cutoff frequency, this waveguide section in
the equivalent circuit acts as a lumped reactance. The
wave “travels” a distance 71 in this guide, so each
mode is multiplied by an exponential decay factor
exp(— Ky, ,,11), Where d =h or e represent TE or TM
waves, respectively. In more detail, S;; can be written as

0 S,
STl - (Stl 0 ) (29)
where the submatrix S, is given by
0
exp (— ke 71) (30)
0

exXp ( - "nzePQTl)

The combination of §,; with S, and S, results in the
scattering matrix §; in Fig. 5 that represents the cascaded
structure. The elements of matrix .S, in Fig. 5 are given by

Sia= Sflll + SfllzstlUZSfZHStlelZl (31)
Sic= Sf112S11U2sf212 (32)
(33)
(34)
(35)
(36)

Sca= 1 f221S11U1Sf121

Sce = 8pn + 881802251812
U= (I - Sf122St1Sf211St1) o
U, = (I - SfZIIStlsflzzstl) o
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Fig. 8. Insertion loss of the filter versus frequency for different heights
d of the E-plane fin. h; =1.753 mm; 4, =0.127 mm; ¢, =22 w=0.3
mm; T=20mm; 4:d=14mm; B:d=145 mm; C:d=1.50 mm;
D:d=155mm; E:d=1.60 mm.

where I is the identity matrix. In the next step, we
consider the substructure that consists of fins F,, F,, and
F, with spacing T; and T,. The combination of F;, F,, and
T, is now expressed by matrix §;. Using Sy, and S;; to
represent scattering matrices of 7, and F, respectively, we
obtain the matrix §, of this substructure in the same way
as that of deriving matrix ;. The same procedure is
repeated until the matrix S; is obtained (Fig. 5).

D. Scattering Matrix Representations of Cascaded Sections

The side view of the filter can be now represented by
Fig. 7. The double-step junctions are described by scatter-

_ ing matrices S,; and S,,. The capacitive element of the
filter is the portion of the nontouching E-plane fins, which
is represented by scattering matrices ;. The matrices S
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Fig. 9. Insertion loss of the filter versus frequency for different widths
w of E-plane fin. 51 =1.753 mm; A2 =0.127 mm; ¢, =2.2; d =1.483
mm; T7=20mm; A:w=01mm; B:w=02 mm; C:w=0.3 mm;
D:w=04mm; E:w=05mm.

represents the evanescent-mode guide section, and it can
be found in the same way as Sr,. Since S, S,,, Syand Sr
are all known, the overall matrix §, which characterizes
the filter structure, can be determined from these scatter-
ing matrices by the generalized scattering matrix tech-
nique. The elements of the matrix § are given by

(R(l)) _ (Su 5'12)(1(1)) (37)
R® Sn Sp/\I®
where the submatrices S;, S1,, S5, and S,, are repre-
sented by
Sy=San+t SdquD_ISU
SL=8S11+ SD‘ISi/
8, =S8,,+SD"'SP
Sy =81+ Sn1SD'SQ
SD = (I - StSfllstSdl22)( I— StSf22StSd211)
- StSf12stsd21lstsf2lstsd122
SU = Stsfllstsa’ul(l - stSf2ZStsd211)
+ 8,:8125801158215:8 1
SV = StSf12StSd212(I - St‘sf22StSd211)
+ 8,:8/128:52118:8228:8 212
SP= (I - Stsfllstsd122)Stsf21stsd121
+ Srsﬂ1StSd121s;Sf215tSd122
SQ = (I - Stsfllstsa'122 ) StSfZZStSdZH
+ 88125821285 72156S 4122 -

(38)
(39)
(40)

(41)

(42)

(43)

(44)

(45)

(46)

II1.

Several filters have been designed by the procedure
described above. The design procedure can be used in a
wide frequency range. However in this study, only band-

DESIGN EXAMPLES AND DISCUSSIONS
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Fig. 10. Insertion loss of the filter versus frequency for different dis-
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substrate. €, =2.2; h1=1.753 mm; h2=0.127 mm; 4J=150 mm;
w=03mm; A:7T=15mm; B:T=20mm; C:T=25mm; D:T=
30mm; E:T=4.0 mm.

pass filters operating in the Ka-band have been consid-
ered. In the following discussion, the larger waveguide is
WR-28 (7.11 mm X 3.56 mm) while the smaller waveguide
is WR-15 (3.76 mm X 1.88 mm). For accurate and efficient
computation, the ratios of the modes have to be chosen
such that M/N=a,/b,, P/Q=a/b, and M/P=a,/a.
In the following calculation, the numbers of modes used
are M =8, N=4, P =4, and Q = 2. The center frequency
is the most important quantity for design of a bandpass
filter. Attention is first directed to how the height and
width of the single fin and the distance between the edge
of the fin and the step junction affect the center frequency
of the evanescent filter.

Fig. 8 shows the relationship between the height of the
fin and center frequency for a filter with the E-plane fin
supported by a Duroid substrate (dielectric constant € =
2.2, thickness 42 =0.127 mm). The center frequency de-
creases as the height d of the fin increases, because as d
increases there is more electric energy stored in the gap
between the fin and the wall of the guide. This corresponds
to a larger shunt capacitor in its equivalent network while
the series inductance X, exhibits little change.

Fig. 9 shows the relationship between the width of the
fin and the central frequency for a fin with a fixed height.
The wider the fin, the lower the center frequency. The
wider fin leads to a larger capacitance and inductance in
its equivalent circuit and hence a lower resonant frequency
(see Fig. 4(d)).

The insertion loss versus the frequency for different
distance T of the filter with fixed width and height of the
fin is shown in Figs. 10 and 11. In Fig. 10 the fin is
+ supported by a Duroid substrate while in Fig. 11 there is
no dielectric substrate. When the fin is separated from the
step junction, the center frequency becomes higher and the
curve becomes steeper, since the coupling between the fin
and the step becomes weaker.
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hy=0157 mm, d=1.511 mm, w=0.287 mm, T = 2.506 mm).

With the data presented above, it is now possible to
design a filter with one fin element. Fig. 12 shows the
results for a filter designed in the Ka-band using one fin
element without a dielectric layer. The solid curve repre-
sents the results obtained by this analysis and the dashed
line indicates the meassured data. They are in good agree-
ment. Fig. 13 shows the results of the filter with the
E-plane fin supported by a Duroid layer. Once again
agreement between theoretical prediction and experimen-
tal data is quite good. The small deviation of the insertion
loss between theory and experiment at the center frequency
comes from the metal and dielectric loss.

Fig. 14 shows the calculated response of a filter that
consists of two equal E-plane fin elements on a Duroid
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Fig. 13. Computed and measured insertion loss for an evanescent-mode
waveguide filter with an E-plane fin on a Duroid substrate (4, =1.753
mm, €, =22, h, = 0.157 mm, d =1.483 mm, w = 0.292 mm, 7 =1.502
mm).
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Fig. 14. Insertion loss for an evanescent-mode waveguide filter with

two E-plane fins on a Duroid substrate (h; =1.753 mm, &, =0.127
mm, d=1.50 mm, w=0292 mm, 7=2.0 mm, T1=46248 mm,
€, =2.2). ’

substrate. The height of the fin, the distance from the edge
of the fin to the double-step junction, and the spacing of
the two fins are the design parameters. The 3-dB band-
width is about 1.6 GHz. It is noted that the steepness of
the out-of-band insertion loss curve on the higher frequency
side in Fig. 14 is almost equal to the one on the lower
frequency side. This happens because the waveguide below
its cutoff frequency acts like a lumped reactance.

In general, wider bandwidth and better transmission
performance can be achieved by increasing the number of
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fins. For a multifin structure an optimization procedure
similar to [16] may be used to optimize the performance of
the filter. Alternatively, a filter synthesis can be used to
find the required equivalent circuit parameters in the filter.
The necessary fin dimensions and fin spacing can be found
from a look-up table. The center frequency can be con-
trolled by the dimensions of the fins and the distance
between the edge of the fin and the double-step junction.
The shorter the height and the narrower the width, the
higher the center frequency. Also a longer distance from
the edge of the fin to the double-step junction leads to a
higher central frequency. The height of the fin is the most
sensitive parameter to the center frequency. For instance,
in Fig. 9, if the width of the fin changes by 0.1 mm, the
center frequency shifts about 0.5 GHz, while a variation of
0.05 mm on the height corresponds to a frequency change
of about 1 GHz (see Fig. 8). Since the nontouching fins
can be produced by photolithographic techniques, fine
tuning is normally not required.

IV. CONCLUSIONS

A computer-aided design algorithm for an evanescent-
mode waveguide filter with nontouching E-plane fins is
presented. In this design, the fundamental mode as well as
the higher order mode effects have been taken into account.
This is important in an accurate filter design. The filter
designed in Ka-band has been tested and good agreement
between the measurement and the theory is observed. It is
believed that this kind of filter will be useful in the
millimeter-wave frequency region.
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