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Computer-Aided Design of Evanescent-Mode
Waveguide Filter with Nontouching

E-Plane Fins

QIU ZHANG AND TATSUO ITOH, FELLOW, IEEE

Ab.$tract —This paper presents a computer-aided design algorithm for
the aualysis aud design of an evanescent-mode bandpass filter with non-

touching E-plane fins. The theoretical analysis is based on the generalized
scattering matrix technique in conjunction with the spectral-domain ap-
proach and mode-matching method. The technique used in this paper takes
into account the dominant as well as the higher order effects. The
measured filter responses in the Ka -band are in good agreement with

those obtained by this analysis.

I. INTRODUCTION

I N THE LATE 1950’s Jaynes [1] and Edson [2] proposed

that resonators built in a cutoff waveguide may be used

in filter design. These filters are called’ evanescent-mode

filters. Microwave bandpass filters using evanescent modes

have been designed successfully [3]-[5]. The evanescent-

mode bandpass filter has several advantages over the con-

ventional type of bandpass filters (waveguide above cutoff,

coaxial line, etc.). For instance, a sharper transition to

out-of-band rejection can be obtained on the higher

frequency side. Evanescent-mode waveguide filters are also

smaller than traditional waveguide filters. A waveguide

operating below its cutoff frequency is basically an induc-

tive element [5], [6]. Suitable capacitive elements are needed

to construct an evanescent-mode waveguide bandpass filter.

Evanescent-mode filters using conventional capacitive ele-

ments such as tuning screws [4], [5] are costly and difficult

to mass-produce because of their complicated structure.

Nontouching E-plane fins [7], which are easily fabri-

cated, are proposed in this study as the capacitive ele-

ments. The filter structure, shown in Fig. 1, consists of a

number of nontouching E-plane fins placed in a rectangu-

lar waveguide below cutoff. The fins may be metal only or

supported by a dielectric layer. The input and output

portions of the filter are coupled to the external circuits via

double-step waveguide junctions. The larger waveguides

operate above the cutoff frequency. Since the capacitive

elements utilize a printed circuit structure, they are suit-

able for mass production at low cost.

The initial approach to the synthesis of an evanescent-

mode filter was based on image parameter theory [3].
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Fig. 1. The structure

Recently a design

analysis was used by Craven and Mok [4]. The basic

assumption used is that the only mode existing in the guide

is an evanescent TEIO mode. Under this assumption a

simple transmission line equivalent circuit is applicable.

The filter then can be represented by an equivalent circuit

of the coupled resonators [8], [9]. Although this technique

is accurate enough for some designs, the equivalent circuit

approach neglects the $ffects of higher order modes. Omis-

sion of these effects could cause a bandwidth shrinkage

and higher bandpass ripples in the filter response. In this

paper a generalized scattering matrix technique is used in

conjunction with the spectral-domain approach and the

mode-matching method to analyze and design an evanes-

cent-mode waveguide bandpass filter with nontouching
E-plane fins. This method takes into account the effect of

the dominant as well as all the higher order modes.
As shown in Figs. 1 and 2, the filter consists of three

portions: the double-step waveguide junctions; the non-

touching E-plane fin portion, which may contain more

than one fin; and the waveguide below cutoff. First each

portion is characterized by its corresponding generalized

scattering matrix. In this study, the scattering matrix of the

double-step junction is found by the mode-matching tech-

nique. The scattering matrix of the nontouching fin is

obtained by combining the spectral-domain method with
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Fig. 2. (a) Cross sectional view. (b) Top view. (c) Side view of the filter.

residue calculus [7]. The scattering matrix of the evanes-

cent waveguide is derived by the transmission line equiv-

alent circuits of the waveguide. These matrices are then

combined via a generalized scattering matrix technique to

obtain the scattering matrix description of the evanescent-

mode filter. The insertion loss and the return loss of the

filter can then be obtained from the final scattering matrix.

Filters designed with the present technique have been

tested in the Ku-band. Go6d agreement between theory

and measurement is observed.

H. ANALYSIS AND DESIGN PROCEDURE

The analysis of an evanescent-mode waveguide band-

pass filter with nontouching E-plane fin is based on the

generalized scattering matrix technique in conjunction with

the spectral-domain approach and the mode-matching

method. The study begin with a brief description of the

generalized scattering matrix. Then the scattering matrix

representations for the double-step junction, the nontouch-
ing E-plane fins, and the evanescent-mode waveguide sec-

tion are obtained by the mode-matching technique, the

spectral-domain method, and waveguide theory, respec-

tively. Finally, these scattering matrices are combined to

obtain the final generalized scattering matrix. The filter

response is calculated from the final scattering matrix.

A. Generalized Scattering Matrix

The concept of a generalized scattering matrix, intro-

duced by Pace and Mittra [10], is closely related to the

scattering matrix of circuit theory or of microwave net-

work theory. It differs by including scattering of all modes,

so that the scattering matrix will in general be of infinite

order.

The scattering matrix can be defined for a junction

discontinuity at which the fields may be expanded in

modes, such as the double-step waveguide junction. Con-

sider that the rnn th TE mode is incident upon the plane

z = O from the larger waveguide 1 and waves are reflected

back into waveguide I and transmitted into the smaller

waveguide II. If the amplitude of the mn th TE incident in

I is normalized to unity, then the amplitude of the pqth

TE scattered mode in waveguide I is S1~ (pq, inn), and

the amplitude of the pqth transmitted TM mode in wave-

guide II is S#~ (pq, inn).

In the notation used above, the scattering matrix relates

the excited modes to the incident ones via

(::)=[s.1($) (1)

The superscript s indicates scattered fields, and i ex-

presses the incident fields. The general element of Sd is
S~( pq, mn ), where x and Y( = E or M) represent a TE or

TM to x wave; i and j = I or II indicate the larger guide

or smaller guide; m, n, p, and q are integers correspond- ,

ing to different modes. Theoretically the generalized ma-

trix is of infinite dimensions corresponding to the infinite

number of eigenmodes. The matrix is truncated to finite

size for numerical calculations [111].

B. Scattering Matrix Representatim of a Double-Step

Junction by Mode-Matching Method

In this section the scattering matrix representation of a

double-step junction is derived via the mode-matching

technique [12], [13]. We use I to represent the larger guide

while the smaller guide, which is a partially dielectric-

loaded waveguide, is denoted by II. The field is derived

from the electric vector potential F and the magnetic

vector potential A [14]:

E=–vx F+v Xv XA/juco (2)

H=v XA+v Xv XF/jupo. (3)

In this study it is convenient to choose

A=sjx

F=+x

where d and d are the scalar functions

(4)

(5)

which represent

the electric (TE) wave and magnetic (TM) wave transverse

to the x direction, respectively, and x is a vector in the x

direction. These potentials are extended in terms of their

eigenfunctions, which must satisfy the boundary condi-

tions. The potentials in each region can be expressed as
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follows :

% = ~ ~ [alfnnexP(- ‘l.bmz)

m=ln=O

+ ~imnexP(~t2hmn’ )] Pzmn(x, y)

+1= 5 f [C,mnw(- ~l,emnZ)
m=on=l

+ d,~. exp(k,,.m.z)] Q,m.(x, Y).
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(6)

(7)

The notation used in this part is as follows:

%](I1

11111— 1 = m, n, or mn indicates mth, n th, or mn th

kL
mode;

d = h or e, h: TE-to-x field; e: TM-to-x field;

j =1, 2, or 3 indicates the variable in the

region 1, 2, or 3 of the smaller waveguide;
— c = x, y, or z indicates that x, y, or z direc-

tion, respectively;

i = I or II, I: larger waveguide; II: smaller

waveguide;

indicates the variable
where

PLmn(x, y)= Rtm(x)s,n(y) (8)

Qirnn(x, ~) =T*(X’)Kn(.Y) ~ (9)

MaI O – F’-bII o

0 vc~ o – Mdll

Mbl ‘CI – %1 VdII

v aI – vdl iwbll MC,l
.,.-

iwl

A Imn

c Imn

B 11P q

D 11P q

——

where N,l~, N*l., N,llJP,. . . . and Ntll,q, are normalized

coefficients. The m th eigenmodes of TE-to-x and TM-to-x

fields in the partially filled waveguide in region j are
represented by kllX,k~ and kllXj,~. Here k,zh~. and k,,e~n

are the propagation constants of the mn th TE- and TM-to-

x fields in the x direction, and must satisfy the following

dispersion equations:

where d = h or e, j“ =1, 2, and 3, k. is the wavenumber in

free space, k]= fikO, and CJ is the relative dielectric

constant of the smaller guide in region j. The coefficients

a lmn~ b c,~~, and d,~~zmn~ in (6) and (7) correspond to

incident and reflected waves and are related to each other

by the scattering matrix. The scattering matrix can be

determined by matching the tangential fields at the step

discontinuity at z = O (see Fig. 2(a)):

E Ix,.Plat 2=0 =E IIx, ylat z=O in area A‘

H Ix, plat 2=0 = H1lX ~lat,=0 in area A* (20)
E Ix, ylat :=0 =0 ‘ in area Al– A2.

Applying the orthogonality relationship between poten-

tial functions leads to the matrix equation

– Mal o VobII

o – VC1 o &fdII

– Mbl MCI V& vdll

V=l v iwbll – iwclldl

n42

B Imn

D Imn

A 11Pq

c 11P q

where M.I, MCI, etc, express matrices. For instance, Mal
are the eigenfunctions of the TE-to-x and TM-to-x fields, is a matrix of dimensions P X Q X M X N. Vbll, V=l, ..-
respectively. In region I, these eigenfunctions are repre-

sented by
are diagonal matrix of dimensions P x Q X P X Q, M X N

R1~(x) = N,l~sin(mmx/al) (lo)
X M X N,. . . . and Amn, Dpq, . . . etc. are vectors of cli-

mensions M X N or P X Q.

‘h(~) = NsIncOs (~w/h) (11) The scattering matrix o~ the double-step discontinuity is

Tim(x) = N,1~cos(m7rx/al) (12)
then given by

Vi.(y) = N“In sin(nmy/bl) (13)
‘=(2 ::)=M1”M1 ’21)

m=0,1,2,. ... M. n=0,1,2,. ... N.

In the smaller waveguide,’ the eigenfunctions are given by

%,(y) = NSI,qCOS[(q~/b)(y - Y,)] (14)

(
N rIIlp sin k~~X~hP(x - x,) Xl<x<xl+hl

IN rII 2p sink~~X’hP(x -‘1 - ‘1)
R1lP(X) = +N

,n*Pcoskxm~p(x -xl - h~) x1+h1<x<x1+h1+h2
(15)

\
N (,113P sin k11XD3hp x —xl — a) x1+h1+h2<x<x1+a

‘IIq(~) = ‘.IIqsin[(q~/b)(Y– _YI)] (16)

(
N,lllPCOS kllX1=p (X – xl ) xl<x<.xl+hl

./

‘t112pc0s ‘IIx2ep (x-xl- h,)
T1lP(X) = +x

tI12p sin&I..2.p(X-X1-lzJ x1+h1<x<x1+h1+h2
(17)

\ N,113PCOS k ,1X3P(x -xl -a) x1+h1+h2<x<x1+a

p=o,l,2,. ... P; q=0,1,2,. ... Q.
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Fig. 4. (a) Nontouching E-plane fin in a rectangular waveguide. (b)
End view. (c) Side view. (d) Equivalent circuit of the nontouching fin.

Since the double-step junction is between an empty

waveguide and a partially filled waveguide, the formula-

tion is much more complicated than a simple double-step

junction. The program was checked by computing the

scattering parameters of a simple double-step waveguide

discontinuity from @ to K-band (15.8 mm X 7.9 mm to

10.7 mm X4.32 mm)with M=8, N=4, P=5, and Q=2.

The results are in good agreement results with Arndt and

Wriedt’s (Fig. 3) [15].

C. Matrix Representation for the Portion of Nontouching

Fin;

The scattering matrix for a nontouching fin can be

obtained by combining the spectral domain method with

residue calculus [7]. A brief description is given here, since

more details can be found in [7]. Referring to Fig. 4 at

x = hl + h ~, the sum of the incident fields (E;, ahd E:)

and the scattering fields (E: and E;) must be equal to the

total fields (E; and E;). In the space-domain formulation,

coupled integral equations for the unknown current distri-
butions jy and j, on the strip, which generates the scattered

fields, may be derived from the condition that the total of

the tangential fields must be equid to zero on the strip. In

the Fourier transform domain defined by

the above statement is

(23)

(24)

where ~YY etc. are Fourier transforms of dyadic Green’s

function. A set of inhomogeneous algebraic equations can

be obtained by applying Galerkin’s method to (23) and

(24):

(26)

where ( ) indicates the inner product and * denotes the

complex conjugate. Note that, in contrast to the eigenvalue

problem, the right-hand sides of (25) and (26) are not zero

because the contribution of the incident field is nonzero

everywhere. Equations (25) and (26) are solved for the

expansion coefficeints a, and b, of the assumed current

di&ibution jY = Z:ai jYi and j= ~=X~bj jzj. Hence ~~ tid

fl~ are now completely known from (23) and (24):

- On the other hand, the scattered field for Iz I > w/2 can

be expanded into LSE and LSM modes containing propa-

gation factors such as exp ( + j&z) in the space domain.

Hence in the spectral domain, they are expanded in the

series containing such pole terms as l/(~ & &.), whele

the &ti are the propagation ccmstants of the LSE and

LSM modes. The left-hand sides ,of, (23) and (24) can be

written in terms of these series expansions with @nown

modal amplitudes, which are related to the scattering

parameters of the generalized scattering matrix. Note that

~YY, etc. contain poles at + l?~.. Hence, the modal ampli-

tudes can be found by equating the residue of both sides of

(23) or (24), namely, the scattering matrix of the nontouch-

ing fin can be determined.

Since the filter may contain more than one fin element,

a general case must be considered here. Fig. 5 shows a

structure consisting of n fins, which are indicated by

Fl, F2,. . . , F.. These fins are separated from one to another

by distances T1, T2,. . . . T.-l. To obtain a scattering matrix

representation S’ for this portion, we consider that a

substructure which consists of firls F1 and F2, with spacing

T1. The substructure is shown in Fig. 6. The scattering
matrices of fins F1 and F2, S~~ and Sfz are obtained by

the method described above. With the scattering matrix

notation, each of these matrices contains four submatrices
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and can be written as

‘fl=E: :::)

()

Sf 211 S,212

sf2 =
S’221 s,222 -

—

(27)

(28)

With the knowledge of the scattering parameters for a

single fin, the generalized scattering matrix technique is

applied to obtain a scattering matrix of this substructure.

The concept is that of multiple-reflection phenomenon. If

a wave from region A is incident upon Fl, fields will be

partly reflected back into region A and partly transmitted
into region B. After traveling a distance Tl, a part of the

Metal wall

r
,(A)+ + I (c)

A

R(A)+

‘u
,(A)

-

R(A)_

[1
SAA SAC

s, -

s~A Scc

Fig. 6. Derivation of scattering matrix for the cascaded substructure.

impedances are imaginary. Since no propagation modes

exist below the cutoff frequency, this waveguide section in

the equivalent circuit acts as a lumped reactance. The

wave “travels” a distance T1 in this guide, so each

mode is multiplied by an exponential decay factor

exp ( – K ~lzdmnT1~,where d = h o; e represent TE or TM

waves, respectively. In more detail, STI can be written as

where the submatrix Stl is given by

(29)

(=P ( – KII,MOTI) o
0 exP ( – KIM20T1 )

. . . 0

S,l= exp ( – ICIIZ,OIT1)
‘ I

(30)

\

o
0 . . .

‘XP ( – ‘IIZ,PQT1 )
I

wave transmitted into region B is reflected back and the

remaining part is transmitted into region C via F2. This

process continues until the reflected wave dies out. This

multiple-reflection phenomenon between F1 and Fz im-

plies a matrix combination process that leads to the

scattering matrix for the substructure.

In region B of Fig. 6, the smaller waveguide section

with length Tl, operated below its cutoff frequency, is

represented by the matrix S~l. The elements of those

matrices are easily obtained from the transmission line

equivalent circuits of the guide, in which the characteristic

The combination of S,l with S,l and S,2 results in the

scattering matrix S’l in Fig. 5 that represents the cascaded

structure. The elements of matrix SI in Fig. 5 are given by

SAA= Sflll + sf112stlu2sf211 stlsf121 (31)

S4C = S,112$IU2S,212 (32)

SCA= .Y,221S,JJ1S,121 (33)

Scc= S,222+ sf221st1sf122st1sf212 (34)

U1 = (z – sf@t1sf2#t1) -1 (35)

U2 = (~ – S,211S,1S,122SJ-1 (36)
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8. Insertion loss of the filter versus frequency for different heights
d of the E-tiane fin. h, =1.753 mm: h. = 0.127 mm: c. = 2.2 w = 0.3. ,. ,.
mm; T=2.0 mm; ,4:d=l.4 mm; B:d=l.45 mm; C:d=l.50 mm;
D:d=l.55 mm; E:d=l.60 mm.

where I is the identity matrix. In the next step, we

consider the substructure that consists of fins Fl, Fz, and

F3 with spacing T1 and T2. The combination of Fl, F2, and

T1 is now expressed by matrix S1. Using STZ and L-f’f3to

represent scattering matrices of Tz and F3 respectively, we

obtain the matrix Sz of this substructure in the same way

as that of deriving matrix S1. The same procedure is

repeated until the matrix S’f is obtained (Fig. 5).

D. Scattering Matrix Representations of Cascaded Sections

The side view of the filter can be now represented by

Fig. 7. The double-step junctions are described by scatter-

ing matrices Sdl and Sd2. The capacitive element of the

filter is the portion of the nontouching E-plane fins, which

is represented by scattering matrices Sf. The matrices ST

Freguency (GHz)

Fig. 9. Insertion loss of the filter versus frequency for different widths
w of E-plane fin. hl = 1.753 mm; h2 = 0.127 mm; (2 = 2.2; d = 1.483
mm; T=2.O mm; A:w=O.1 mm; B:w=0.2 mm; C: W=O.3 mm;
D:w=0.4 mm: E:w=0.5 mm.

represents the evanescent-mode ~uide section, and it can

be found in the same way as S~l. Since Sdl, S& Sf and ST

are all known, the overall matrix S, which characterizes

the filter structure, can be determined from these scatter-

ing matrices by the generalized scattering matrix tech-

nique. The elements of the matrix S are given by

(3=(2:2)(3 (37)

where the submatrlces Sll, SIJ, S21, and S2Z are repre-

sented by

% = Sdlll + sd112tiD-?$[f (38)

$2 = sd112 + SD-lSV (39)

S21= Sdllz + SD–%P (40)

S22 = Sdlll + sd112sD - lSQ (41)

SD = (~ – s,sflls,sd122 )(1- ‘tsf22stsd211)

– s,sf~~s,sd2~~s,sf2~s,sd~22 (42)

SU = $Sf1p$Sd121(I - L$,i~f22s#d2,,)

+ slsf12stsd211stsf 21stsd121 (43)

S V = $sf ~2stsd212 ( I – $sJ22stsd211)

+ stsf12$sd211sts f22stsd212 (44)

SP = (~ – s~sf#&122)$Sf21stsd121

+ $sf#tsd12#tsf21 stsd122 (45)

SQ = (1 – stsf#&zz ) &$’’22stsd212

(46)+ ‘tsf12stsd212st sf2!lstsd122 .

III. DESIGN EXAMPLES AND DISCUSSIONS

Several filters have been designed by the procedure

described above. The design procedure can be used in a

wide frequency range. However in this study, only band-
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Freguency (GHz)

Fig. 10. Insertion loss of the filter versus frequency for different dis-
tances 2’ between the step junction and the E-plane fin with Dunod
substrate. Cz= 2.2; M =1.753 mm; h2 = 0.127 mm; d =1.50 mm;
w= 0.3 mm; A: T=l.5mm;. B: Z’=2.0 mm; C: Z’=2.5 mm; D:T=
3.0 mm: E: T= 4.0 mm.

Freguency (GHz)

Fig. 11. Insertion loss of the filter versus frequeney for different dis-
tances T between the step jmmction and the E-plane fin (metaf only).
d=l.50 mm; WJ=O.28 mm; A: T=l.5 mm; B: T=2.0 mm; C:T=
2.5 mm; D:7’=3.0 mm; E: T=4.0 mm.

pass filters operating in the Ku-band have been consid-

ered. In the following discussion, the larger waveguide is

WR-28 (7.11 mm x 3.56 mm) while the smaller waveguide

is WR-15 (3.76 mm X 1.88 mm). For accurate and efficient

computation, the ratios of the modes have to be chosen

such that i14/N = al/bl, P/Q = a/b, and M/P = al/a.

In the following calculation, the numbers of modes used

are M = 8, N = 4, P = 4, and Q = 2. The center frequency

is the most important quantity for design of a bandpass

filter. Attention is first directed to how the height and

width of the single fin and the distance between the edge

of the fin and the step junction affect the center frequency

of the evanescent filter.

Fig. 8 shows the relationship between the height of the

fin and center frequency for a filter with the E-plane fin

supported by a Duroid substrate (dielectric constant c =

2.2, thickness h 2 = 0.127 mm). The center frequency de-

creases as the height d of the fin increases, because as d

increases there is more electric energy stored in the gap

between the fin and the wall of the guide. This corresponds

to a larger shunt capacitor in its equivalent network while

the series inductance Xl exhibits little change.

Fig. 9 shows the relationship between the width of the

fin and the central frequency for a fin with a fixed height.

The wider the fin, the lower the center frequency. The
wider fin leads to a larger capacitance and inductance in

its equivalent circuit and hence a lower resonant frequency

(see Fig. 4(d)).

The insertion loss versus the frequency for different

distance T of the filter with fixed width and height of the

fin is shown in Figs. 10 and 11. In Fig. 10 the fin is

supported by a Duroid substrate while in Fig. 11 there is

no dielectric substrate. When the fin is separated from the

step junction, the center frequency becomes higher and the

curve becomes steeper, since the coupling between the fin

and the step becomes weaker.
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Freguency (GHz)

Fig. 12. Computed and measured insertion loss for an evanescent-mode
waveguide filter with an E-plane fin (metaf only, hl = 1.753 mm,
hz = 0.157 mm, d=l.511 mm, w = 0.287 mm, T= 2.506 mm).

With the data presented above, it is now possible to

design a filter with one fin element. Fig. 12 shows the
results for a filter designed in the Ku-band using one fin

element without a dielectric layer. The solid curve repre-

sents the results obtained by this analysis and the dashed

line indicates the meassured data. They are in good agree-

ment. Fig. 13 shows the results of the filter with the

E-plane fin supported by a Duroid layer. Once again

agreement between theoretical prediction and experimen-

tal data is quite good. The small deviation of the insertion

loss between theory and experiment at the center frequency

comes from the metal and dielectric loss.

Fig. 14 shows the calculated response of a filter that

consists of two equal E-plane fin elements on a Duroid
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waveguide filter with an E-plane fin on a Duroid substrate ( hl = 1.753
mm, Cz= 2.2, hz = 0.157 mm, d=l.483 mm, w = 0.292 mm, T=l.502
mm).
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Fig. 14. Insertion loss for an evanescent-mode waveguide filter with
two E-plane fins on a Duroid substrate (hl = 1.753 mm, hz = 0.127
mm, d =1.50 mm, w = 0.292 mm, T = 2.0 mm, T1 = 4.6248 mm,
62 = 2.2).

substrate. The height of the fin, the distance from the edge

of the fin to the double-step junction, and the spacing of

the two fins are the design parameters. The 3-dB band-

width is about 1.6 GHz. It is noted that the steepness of

the out-of-band insertion loss curve on the higher frequency
side in Fig. 14 is almost equal to the one on the lower

frequency side. This happens because the waveguide below

its cutoff frequency acts like a lumped reactance.

In general, wider bandwidth and better transmission

performance can be achieved by increasing the number of

411

fins. For a multifin structure an optimization procedure

similar to [16] may be used to optimize the performance of

the filter. Alternatively, a filter synthesis can be used to

find the required equivalent circuilt parameters in the filter.

The necessary fin dimensions and fin spacing can be found

from a look-up table. The center frequency can be con-

trolled by the dimensions of the fins and the distance

between the edge of the fin and the double-step junction.

The shorter the height and the narrower the width, the

higher the center frequency. Also a longer distance from

the edge of the fin to the double-step junction leads to a

higher central frequency. The hei@ of the fin is the most

sensitive parameter to the center frequency. For instance,

in Fig. 9, if the width of the fin changes by 0.1 mm, the

center frequency shifts about 0.5 cJHz, wtile a variation of

0.05 mm on the height corresponds to a frequency change

of about 1 GHz (see Fig. 8). Since the nontouching fins

can be produced by photolithop~aphic techniques, fine

turiing is normally not required.

IV. CONCLUSIONS

A computer-aided design algorithm for an evanescent-

mode waveguide filter with nont ouching E-plane fins is

presented. In this design, the fundamental mode as well as

the higher order mode effects have been taken into account.

This is important in an accurate filter design. The filter

designed in Ku-band has been tested and good agreement

between the measurement and the theory is observed. It is

believed that this kind of filter will be useful in the

millimeter-wave frequency region.
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